Substituting T-braces for continuous lateral braces on wood truss webs

By Cheryl Anderson, Frank Woeste, PE, and Donald Bender, PE

Introduction

eb bracing in trusses is essential for several reasons. With one lateral brace, a compression member is able to carry up to four times the normal load; when two lateral braces are used, the member may carry a load up to nine times more. Lateral braces resist lateral deflection in the webs and decrease the effective buckling length of the web members (Underwood et al., 2001).

T-braces increase the effective stiffness of webs — allowing higher compressive design loads (Shrestha et al., 2001).

Truss webs are assumed to be loaded axially — either in compression or tension. When the design compression load exceeds the unbraced web capacity, the truss designer can specify a lateral brace at the center of the web to increase the design load capacity. In some cases, two braces are needed at the third points to further increase the load capacity of the web. Compression members with an L/d greater than 50 and tension members with an L/d greater than 80 require lateral bracing regardless of the load level in the web (Truss Plate Institute, 1995). The truss designer typically notes the need for permanent bracing on the truss design drawing by placing a small rectangle on the web (See Figure 3, for

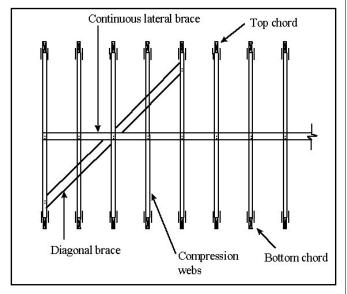


Figure 1. Elements of continuous lateral bracing for webs in a roof system.

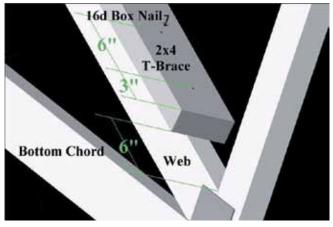


Figure 2. Correct installation of a 2x4 T-brace on a web as assumed in the development of Tables 1a,1b,1c, and 1d.

example, where bracing is required on webs B-K, C-J, E-J and F-I). The contractor has two options for bracing webs when required—either Continuous Lateral Braces (CLBs) or T-braces.

The first option, when using CLBs, is a piece of lumber that extends through several trusses, attached to a web member at the center, or two pieces attached at the 1/3 points. Figure 1 shows how the CLB is placed into the roof system and the diagonal bracing that is also required. CLBs are commonly used in construction, especially with trusses spaced 2-ft. on-center.

For trusses with a 4-ft. to 10-ft. spacing, a T-brace approach may be a more practical option, requiring less lumber than a CLB system. T-braces can be installed on the ground, eliminating a fall hazard, and no web diagonal bracing is needed when the truss is installed in the roof. A T-brace, as defined by this paper, is a 2x4 piece of stressrated-lumber that is attached symmetrically to the narrow edge of the compression web member as shown in Figure 2. The T-braces tested and used in this paper to create design tables extend within to six inches from either end of the web. The minimum allowable nail size required is 16d Box (0.135 in x 3.5 in) nails, placed at 6 inches on center with the first nail 3 inches from the end (Shrestha et al., 2001).

Design Procedure

he procedure used to reach the allowable load values presented in Tables 1a,1b,1c, and 1d is from the National Design Specification (NDS) for Wood

Construction (AF&PA, 1997). The allowable load is found using the tabulated allowable compression parallel to grain,

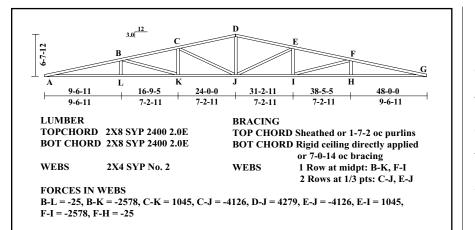


Figure 3. Example truss design drawing showing web forces.

appropriate adjustment factors, and properties of the lumber.

Design criterion for a compression member is:

where:

 $f_{C} = P/A_{W} =$ compression stress parallel to grain, psi,

 $F_{c}' = Adjusted allowable compression stress parallel-to-grain, psi,$

P = Allowable load in the web, lbs., and,

 A_{W} = Cross-sectional area of the web, in.².

The allowable load in a web with a specific length is:

 $P = A_W F_C C_D C_P C_M C_t C_i$ where:

F_C = tabulated allowable compression stress parallel-to-grain, psi,

- C_{D} = load duration factor,
- $C_p = \text{column stability factor,}$
- C_{F} = size factor for sawn lumber,
- C_{M} = wet service factor,
- C_{+} = temperature factor, and

$$C_i = incising factor.$$

As stated before, the F_c values are tabulated in the NDS. The load duration factor for a snow plus dead load combination is 1.15. The size factor is 1.0 for Southern Pine; for other species, the size factor is tabulated in the NDS Supplement.

The column stability factor is given by:

$$C_{p} = \frac{1 + (F_{cE}/F_{c})}{2c} \sqrt{\left[\frac{1 + (F_{cE}/F_{c})}{2c}\right]^{2} - \frac{(F_{cE}/F_{c})}{c}}$$

c = 0.8 for sawn lumber $F_{c} = F_{c}C_{D}C_{F}$ $F_{cE} = K_{cET}/(L_{e}/d)^{2}$ KCE = 0.3 for visually graded lumber, 0.418 for machine stress rated lumher

 E'_T = modified modulus of elasticity of T-braced web, as determined by Equation 4 (Shrestha et al., 2001), psi

 $L_e = effective length of the web, in$ $<math>L_e = L_W K_e$

 K_{e} = buckling length coefficient

 L_{W} = unbraced web length, in

d = least dimension of web member, typically equal 1.5 in.

A buckling length coefficient of $K_e = 0.8$ has been commonly used in truss design and was proven to be accurate in laboratory tests (Grant et al., 1986).

A regression equation was proposed by Shrestha et al. (2001) to determine the stiffness of a web with a T-brace attached. In this paper, the format of the equation is slightly modified: $E'_{T}=[1.20E_{W}1_{W}+0.363E_{B}1_{B}+AR-B]/1_{W}$

 E'_T = effective modulus of elasticity of web, psi,

 E_W = modulus of elasticity of the web, psi,

 I_W = weak axis moment of inertia of a 2x4 web equal to 0.984 in.⁴,

 E_B = modulus of elasticity of the 2x4 T-brace, psi,

 I_B = strong axis moment of inertia of a 2x4 T-brace equal 5.359 in.⁴,

 L_{M} = web length, in,

 $L_B = T$ -brace length, in.

 $\bar{R} = L_B/L_W \le 8/9$

A = Constant equal 34.8x106 lb.-in.², and

 $B = Constant equal 27.9x106 lb-in.^2$.

T-Brace Design Tables

ables 1a and 1b are specific to Southern Pine webs only. As stated in the footnote, the loads are conservative when used for other grades and species with lower Fc values and lower E values. Tables 1c and 1d are specific to Douglas Fir-Larch and Spruce-Pine-Fir webs, respectively. These two tables are conservative for other grades and species, with the exception of Southern Pine, that have lower Fc and E values than stated.

Table 2 is a reference for the Modulus of Elasticity, E, for several species groupings and grades of lumber. These values were taken directly from the NDS Supplement (AF&PA, 1997).

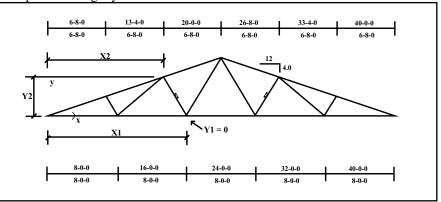


Figure 4. Truss used to determine unknown web lengths.

Design Examples

1. How to find the web load on a truss design drawing:

The web load will be indicated on a truss drawing as a force in pounds and identified with the web end points. If the web is in compression, the force will either be negative or labeled with a "C". In Figure 3, the force in member B-K is -2,578 lbs., so it is in compression.

2. How to determine web length:

If requested, truss manufacturers could print the web length directly on the truss design drawing. When the length is not specified, use the following steps and Figure 4 to estimate it:

i. Find points X1, X2, Y1 and Y2 on the truss drawing. X1 and X2 can be read directly from the drawing or requested from the truss designer. In the example, X1 = 16 ft. (192 in.) and X2 = 13 ft.-4 in. (160 in.).

ii. Length Y2 can be calculated using X2 and the roof slope: Y2=X2* (slope). Y2 in the example is 160*(4/12) = 53.3 in. In a typical post frame truss with a flat bottom, Y1 would equal 0.

iii. Use the following equation to find the length of the web, L_{M} :

$$L_{W} = \sqrt{(X1 - X2)^{2} + (Y2 - Y1)^{2}}$$

Substituting the numbers from the example into the equation,

$$L_{W} = \sqrt{(192 - 160)^{2} + (533 - 0)^{2}},$$

 L_W = 62.6 in. Round to the nearest web length that produces the lower allowable compression load in the applicable table based on web grade and species grouping. For a T-brace to work, there are specific requirements that must be met. First, LW must be less than 14 ft (168 in.) to meet NDS slenderness restrictions of $L_e/r < 173$ (Shrestha et al., 2001). Secondly, the formulas used in this paper are only valid for the web lengths shown in the tables, 2x4 webs and 2x4 stress rated T-braces. The design data presented do not apply to 1x4 braces or a nailing schedule other than tested. A closer nail spacing and longer or larger diameter nails are permitted provided they do not split the lumber.

3. One CLB

In Figure 3, the truss design drawing calls for a single CLB on member B-K (and F-I). From the drawing, the load in this web is -2,578 lbs., which means it is in compression. The webs are 2x4 No. 2 Southern Pine and the

Table 1a

Allowable compression load for a 2x4 No. 3 or Stud grade Southern Pine1,2 web of a specific length having a 2x4 T-brace with E value as shown.

¹ Tabulated values are conservative for other 2x4 grades and species groupings that have Fc values equal to at least 975 psi and E values equal to at least 1.4 million psi.

 2 For 2x4 T-brace extending to within six inches of web member ends, attached by 16d Box nails (0.135 in x 3.5 in) and placed at 6 inches on center starting at 3 inches from the brace ends.

Table 1b

Allowable compression load for a 2x4 No. 2 Southern Pine1,2 web	of	а	
specific length having a 2x4 T-brace E value as shown.			

specific length	nanng a	2/11 1 2/0		ie us 5110	•••••		
Truss web length (in.) 0.9	Modul 1	lus of El 1.1	lasticity 1.2	(E), m i 1.3	illion ps 1.4	si 1.5	1.6
54 5360 56 5480 58 5540 60 5550 62 5530 64 5470 66 5400 68 5320 70 5220 72 5110 74 5000 76 4890 78 4770 80 4650 82 4530 84 4420 86 4300 88 4190 90 4080 92 3970 94 3860 98 3660 100 3560 102 3470 104 3200 122 2150 144 1800	- 5730 5830 5850 5810 5740 5550 5440 5320 5550 5440 5320 5080 4950 4820 4700 4450 4330 4570 4450 4310 4450 4310 4570 4450 3990 3880 3780 3670 3580 3480 3390 3300 2670 2210 2860	1.1 6110 6180 6190 6100 6010 5790 5670 5530 5400 5130 4990 4860 44730 4230 4110 4000 3890 3780 3680 3390 2750 22750 2101	1.2 6490 6530 6460 6380 6280 6160 6380 5890 5450 5450 5450 5450 5450 5450 5450 54	1.3 6860 6870 6870 6870 6870 6770 6660 6410 6260 6110 5960 5490 5490 5490 5040 4890 4750 4490 4360 4120 4000 3890 3780 3580 2900 2410	1.4 7240 7220 7160 7070 6950 6810 6500 6340 6500 6340 6170 6000 5350 5510 5350 55190 5350 5190 5350 4420 4480 4480 4230 4480 4230 4480 4230 4110 4000 3880 2460 2980 2070	1.3 7610 7570 7490 7370 7230 7080 6910 6740 6560 6380 6200 5850 5510 5190 5040 4890 4750 4610 4340 4220 4100 3970 3770 3050 2120	1.0 7990 7810 7680 7520 7350 7350 6970 6780 6590 6400 6210 6030 5870 5500 5500 5500 5500 5500 5500 5540 5500 5540 4460 4430 4460 4430 44210 4090 3970 3860 3130 2590
¹ Tabulated values are conservative for other 2x4 grades and species groupings							

¹ Tabulated values are conservative for other 2x4 grades and species groupings that have Fc values equal to at least 1,650 psi and E values equal to at least 1.6 million psi.

 $^2\,$ For 2x4 T-brace extending to within six inches of web member ends, attached by 16d Box nails (0.135 in. x 3.5 in.) and placed at 6 inches on center starting at 3 inches from the brace ends.

cific length having a 2x4 T-brace with E value as shown								
Truss web Modulus of Elasticity (E), million psi length (in.) 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6								
		1	1.1	1.2	1.3	1.4	1.5	1.6
54	4900	5280	5650	6030	6400	6780	7150	7530
56	5050	5400	5750	6100	6450	6800	7150	7500
58	5140	5470	5790	6120	6440	6770	7090	7420
60	5180	5480	5790	6090	6400	6700	7000	7310
62	5180	5460	5750	6030	6320	6600	6890	7170
64	5150	5420	5680	5950	6220	6490	6750	7020
66	5100	5350	5600	5850	6100	6350	6610	6860
68	5030	5270	5500	5740	5980	6210	6450	6690
70	4950	5170	5390	5620	5840	6060	6290	6510
72	4860	5070	5280	5490	5700	5910	6120	6330
74	4760	4960	5160	5360	5560	5760	5960	6160
76	4660	4840	5030	5220	5410	5600	5790	5980
78	4550	4730	4910	5090	5270	5450	5630	5810
80	4440	4610	4780	4960	5130	5300	5470	5640
82	4340	4500	4660	4820	4990	5150	5310	5470
84	4230	4380	4540	4690	4850	5000	5160	5310
86	4120	4270	4420	4570	4710	4860	5010	5160
88	4020	4160	4300	4440	4580	4720	4860	5010
90	3910	4050	4180	4320	4450	4590	4720	4860
92	3810	3940	4070	4200	4330	4460	4590	4720
94	3710	3840	3960	4080	4210	4330	4460	4580
96	3620	3740	3850	3970	4090	4210	4330	4450
98	3520	3640	3750	3860	3980	4090	4210	4320
100	3430	3540	3650	3760	3870	3980	4090	4200
102	3340	3450	3550	3660	3760	3870	3970	4080
104	3260	3360	3460	3560	3660	3760	3860	3960
106	3170	3270	3370	3460	3560	3660	3760	3850
108	3090	3180	3280	3370	3470	3560	3650	3750
120	2500	2580	2660	2730	2810	2880	2960	3040
132	2070	2130	2190	2260	2320	2380	2450	2510
144	1740	1790	1840	1900	1950	2000	2060	2110

 Table 1c

 Allowable compression load for a 2x4 No. 3 Douglas Fir-Larch web of a spe

¹ Except for Southern Pine, tabulated values are conservative for other 2x4 grades and species groupings that have F_c values equal to at least 775 psi and E values equal to at least 1.4 million psi.

 $^2\,$ For 2x4 T-brace extending to within six inches of web member ends, attached by 16d Box nails (0.135 in x 3.5 in) and placed at 6 inches on center starting at 3 inches from the brace ends.

desired T-braces are 2x4 Stud Spruce-Pine-Fir (SPF). From Table 2, the E is 1.2 million psi for Stud grade SPF. By following the method described above, the calculated web length was 91.2 in. Use Table 1b because the webs are made from No. 2 Southern Pine. Round 91.2 in. up to 92 in. since the table value is less for 92 in. compared to 90 in. From the column labeled E = 1.2 million psi and the row labeled 92 in., the allowable load in the web is 4,360 lbs. A SPF T-brace is adequate on web B-K (and F-I) in place of a CLB.

4. Two CLBs

Also in Figure 3, two CLBs are shown on member C-J (and E-J). The load in this member is -4,126 lbs. The webs are 2x4 No. 2 Southern Pine and the T-braces that we would like to use again are 2x4 Stud SPF (E = 1.2 million psi). The calculated web length was 100 in. Reading from Table 1b, the maximum load that this web could carry with a T-brace is 3,890 lbs. Using a Stud SPF T-brace on member C-J instead of a CLB would not be adequate because 3,890 lbs. is less than 4,126 lbs. However, from Table 1b, using a T-brace with an E of 1.5 million psi would produce an allowable web load greater than the 4,126 lbs. required.

Table 1d

Allowable compression load for a 2x4 Stud grade Spruce-Pine-Fir1,2 web of a specific length having a 2x4 T-brace with E value as shown.

Truss we length (ir		Modu	lus of El	asticity	(E), m	illion p		
iengui (ii	., 0.9	1	1.1	1.2	1.3	1.4	1.5	1.6
54	4450	4820	5200	5570	5950	6320	6700	7070
56	4630	4980	5330	5680	6030	6370	6720	7070
58	4750	5070	5400	5720	6050	6370	6700	7020
60	4810	5110	5420	5720	6030	6330	6630	6940
62	4830	5120	5400	5690	5970	6260	6540	6830
64	4820	5090	5360	5630	5890	6160	6430	6690
66	4790	5040	5290	5550	5800	6050	6300	6550
68	4740	4980	5210	5450	5690	5920	6160	6400
70	4670	4900	5120	5350	5570	5790	6020	6240
72	4600	4810	5020	5230	5440	5650	5870	6080
74	4510	4710	4910	5110	5310	5510	5710	5910
76	4420	4610	4800	4990	5180	5370	5560	5750
78	4330	4510	4690	4870	5050	5230	5410	5590
80	4230	4410	4580	4750	4920	5090	5260	5430
82	4140	4300	4460	4630	4790	4950	5110	5280
84	4040	4190	4350	4500	4660	4810	4970	5120
86	3940	4090	4240	4390	4530	4680	4830	4980
88	3840	3990	4130	4270	4410	4550	4690	4830
90 92	3750 3650	3880 3780	4020 3910	4150 4040	4290 4170	4420 4300	4560 4430	4690 4560
92 94	3650	3780	3910	4040 3930	4170	4300 4180	4430	4560 4430
94 96	3470	3590	3710	3830	4060 3950	4180	4310	4430
98	3380	3500	3610	3730	3840	3950	4070	4180
100	3300	3410	3520	3630	3740	3840	3950	4060
100	3210	3320	3420	3530	3630	3740	3840	3950
102	3130	3230	3330	3440	3540	3640	3740	3840
104	3050	3150	3250	3350	3440	3540	3640	3730
108	2980	3070	3160	3260	3350	3450	3540	3630
120	2410	2490	2560	2640	2710	2790	2870	2940
132	1990	2060	2120	2180	2240	2310	2370	2430
144	1670	1730	1780	1830	1890	1940	1990	2040

¹ Except for Southern Pine, tabulated values are conservative for other 2x4 grades and species groupings that have Fc values equal to at least 725 psi and E values equal to at least 1.2 million psi.

 2 For 2x4 T-brace extending to within six inches of web member ends, attached by 16d Box nails (0.135 in x 3.5 in) and placed at 6 inches on center starting at 3 inches from the brace ends.

Discussion

sing higher grades of web material or using larger webs (2x6 or 2x8) are possible ways to eliminate or reduce the amount of CLBs needed. For example, a

2x6 web will carry about 50 percent more load than a 2x4 of the same grade and species, possibly reducing the need for a CLB. The value of using a higher grade of 2x4 web lumber varies with the web length. For short webs, a No. 2 Southern Pine (SP) web will carry up to 69 percent more load

Table 2

Typical 2x4 lumber grades and species groupings that may be used as T-braces.
2x4 Grade and Species Groupings*E, million psi Stud or No. 3 Western Woods0.9 Stud or No. 3 Spruce-Pine-Fir (South) 1.0 Stud or No. 3 Douglas Fir-South 1.1 Stud or No. 3 Hem FirStud or No. 3 Spruce-Pine Fir 1.2 No. 1 Douglas Fir-South or No. 2 Hem-Fir 1.3 Stud or No. 3 Douglas Fir-LarchStud or No. 3 Douglas Fir-Larch (North)No. 2 Non-Dense, No. 3, or Stud Southern Pine 1.4 No. 1 or No.1 & Better Hem-Fir, or 1650f-1.5E MSR 1.5 No. 2 or No.1 Non-Dense Southern PineNo. 2 Douglas Fir-Larch 1.6 *The NDS (1997) Supplement contains a complete list of species and tabu- lated E values for consideration by the bracing designer.

than a Stud or No. 3 SP web. For very long webs, a No. 2 SP web will carry about 14 percent more load than a Stud or No. 3 SP web.

The load carrying capacity of T-braced SP webs of No. 3 and No. 2 grade can readily be seen by inspection of Tables 1a and 1b, respectively. For example, assuming a T-brace with an E of 1.2 million psi and LW equal 60 in., the No. 2 web will carry 56 percent (6460/4140) more load than a No. 3 or Stud grade web. It may be a good practice to use a minimum of No. 2 SP webs in long span post-frame trusses to minimize the number of CLBs specified on the truss design drawing, and when a CLB is noted on the truss design drawing, a T-brace is more likely to substitute for the CLB.

Conclusion

he T-brace design tables provided in this paper show the allowable load that can be applied to a 2x4 truss web with a 2x4 T-brace. When a CLB is required on a web, a 2x4 T-brace may be substituted only if the web load is lower than the tabulated value for the web grade and species, web length, and T-brace E. T-braces are recommended when the trusses are 4 to 10 ft. on center because they can be installed on the ground before the trusses are lifted onto the roof. Also, by using T-braces on the webs instead of CLBs, it is likely that less lumber and labor will be required to erect the trusses and install permanent web bracing. The methods used in this paper were developed specifically for selected 2x4 webs braced with a 2x4 and installed as depicted in Figure 2.

Literature Cited

1. American Forest and Paper Association (AF&PA). 1997. ANSI/AF&PA NDS-1997 National Design Specification for Wood Construction. AF&PA, 1111 19th Street, NW, Suite 800, Washington, DC 20036.

2. Truss Plate Institute (TPI). 1995. ANSI/TPI 1-1995 National Design Standard for Metal Plate Connected Wood Truss Construction. Truss Plate Institute, 583 D'Onofrio Drive, Madison, Wis., 53719

3. Grant, D., F.J. Keenan, and J.E. Korhonen. 1986. Effective length of compression web members in light wood trusses. Forest Products Journal 36(5):57-60.

4. Shrestha, D., D. A. Bender, and F. E. Woeste. 2001. T-brace design for MPC wood truss webs. Forest Products Journal. In Press.

5. Underwood, C. R., F. E. Woeste, J. D. Dolan, and S. M. Holzer. 2001. Permanent bracing design for MPC wood roof truss webs and chords. Forest Products Journal 51(7/8):73-81.

Appendix A

ample T-Brace design assuming a 2x4 Stud Southern Pine web 54 inches long and a 2x4 Stud Spruce-Pine-Fir T-brace.

 $E_W = 1.4 \times 10^6$ psi (F_c = 975 psi from NDS-97

Supplement)

 $E_B = 1.2 \times 10^6$ psi (from Table 2 or NDS-97 Supplement) $\vec{ET} = (1.20 E_W l_W + 0.363 E_B l_B + A R - B) l_W$

where the units of E_W and E_B are psi, the units of I_W and I_B are in.⁴, A equals 34.8x10⁶ lb.-in.², B equals 27.9x106 lb-in2, and when R>8/9, then use R = 8/9.

R = (54-6-6)/54 = 0.778 $E'_T = (1.20* 1.4x10^6 * 0.984 + 0.363* 1.2x10^6 * 5.359 +$ 34.8x¹0⁶ * 0.778 -27.9x10⁶)/0.984 $E'T = 3.21 \times 10^6 \text{ psi}$

 $L_e = K_e L_W = 0.8*54$ in. = 43.2 in.

$$\frac{1}{2}/0 = 43.2/1.5 = 28.8$$

 $F_c^E = K_c E^{-1} (L_e/d)^2 = 0.3 \times 3.21 \times 10^6 / (28.8)^2 = 1,161 \text{ psi}$ $F_c^* = F_c C_D = 975 \times 1.15 = 1,121$. psi (Snow plus dead load assumed.)

Note: For other than Southern Pine, add CF to Fc* calculation.

$$F_{cE}/F_{c}^{*} = 1161/1121 = 1.036$$

$$c=0.8$$

$$C_{p} = (1+1.036)/1.6 - \{((1+1.036)/1.6)^{2}$$

$$C_{p} = \frac{1+(F_{cE}/F_{c}^{*})}{2c} \sqrt{\left[\frac{1+(F_{cE}/F_{c}^{*})}{2c}\right]^{2} - \frac{(F_{cE}/F_{c}^{*})}{c}}$$

-1.036/0.8^{1/2} = 0.703 $F_c = F_c C_D C_p = 975*1.15*0.703=788. \text{ psi}$ $P_{\text{allowable}} = F_c / A = 788* (1.5*3.5)$ = 4,137. lbs.

A note on Load Values in Tables 1a-1d.

In Tables 1a, 1b, 1c, and 1d, the allowable value of P increases with web lengths up to a point and then it decreases slightly. This result is contrary to the typical column relationship whereby the allowable load is inversely related to the effective length of the column. For example, for the case of a 0.9 million psi T-brace in Table 1a, the unusual behavior stems from the equation for F_{CE}, which increases in value up to L_W equal 62 in. The allowable load, P, is dependent on the Column Stability Factor, C_P , which is dependent on F_{CF} . In this particular application of a T-braced web, F_{CE} is adversely affected by L_W in the usual manner, but positively affected by E_T because E_T is a linear function of R. R equals $(L_W - 12)/$ L_W and increases with L_W up to a constant value of 8/9. When L_W is greater than 62 in. for the example case, F_{CE} begins to decrease, so both C_P and the allowable load decrease.

About the authors

Cheryl Anderson and Frank Woeste, P.E., are graduate research assistant and professor, respectively, in the Biological Systems Engineering Department, Virginia Tech, Blacksburg, Va. Donald Bender is professor and director of the Wood Materials and Engineering Laboratory, Washington State University, Pullman, Wash.